Post 84

好烦。

看完python关于类的介绍。

以下大量抄袭自<https://docs.python.org/zh-cn/3/tutorial/

不得不说官方文档是真的好。

和c++很多地方还是相同的。

5.2. del 语句

有一种方式可以从列表按照给定的索引而不是值来移除一个元素: 那就是 del 语句。 它不同于会返回一个值的 pop() 方法。 del 语句也可以用来从列表中移除切片或者清空整个列表(我们之前用过的方式是将一个空列表赋值给指定的切片)。 例如:

>>>

1
2
3
4
5
6
7
8
9
10
>>> a = [-1, 1, 66.25, 333, 333, 1234.5]
>>> del a[0]
>>> a
[1, 66.25, 333, 333, 1234.5]
>>> del a[2:4]
>>> a
[1, 66.25, 1234.5]
>>> del a[:]
>>> a
[]

del 也可以被用来删除整个变量

>>>

1
>>> del a

此后再引用 a 时会报错(直到另一个值被赋给它)。我们会在后面了解到 del 的其他用法。

6. 模块

如果你从Python解释器退出并再次进入,之前的定义(函数和变量)都会丢失。因此,如果你想编写一个稍长些的程序,最好使用文本编辑器为解释器准备输入并将该文件作为输入运行。这被称作编写 脚本 。随着程序变得越来越长,你或许会想把它拆分成几个文件,以方便维护。你亦或想在不同的程序中使用一个便捷的函数, 而不必把这个函数复制到每一个程序中去。

为支持这些,Python有一种方法可以把定义放在一个文件里,并在脚本或解释器的交互式实例中使用它们。这样的文件被称作 模块 ;模块中的定义可以 导入 到其它模块或者 模块(你在顶级和计算器模式下执行的脚本中可以访问的变量集合)。

模块是一个包含Python定义和语句的文件。文件名就是模块名后跟文件后缀 .py 。在一个模块内部,模块名(作为一个字符串)可以通过全局变量 __name__ 的值获得。例如,使用你最喜爱的文本编辑器在当前目录下创建一个名为 fibo.py 的文件, 文件中含有以下内容:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Fibonacci numbers module

def fib(n): # write Fibonacci series up to n
a, b = 0, 1
while a < n:
print(a, end=' ')
a, b = b, a+b
print()

def fib2(n): # return Fibonacci series up to n
result = []
a, b = 0, 1
while a < n:
result.append(a)
a, b = b, a+b
return result

现在进入Python解释器,并用以下命令导入该模块:

>>>

1
>>> import fibo

在当前的符号表中,这并不会直接进入到定义在 fibo 函数内的名称;它只是进入到模块名 fibo 中。你可以用模块名访问这些函数:

>>>

1
2
3
4
5
6
>>> fibo.fib(1000)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
>>> fibo.fib2(100)
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
>>> fibo.__name__
'fibo'

如果你想经常使用某个函数,你可以把它赋值给一个局部变量:

>>>

1
2
3
>>> fib = fibo.fib
>>> fib(500)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

6.1. 有关模块的更多信息

模块可以包含可执行的语句以及函数定义。这些语句用于初始化模块。它们仅在模块 第一次 在 import 语句中被导入时才执行。 [1] (当文件被当作脚本运行时,它们也会执行。)

每个模块都有它自己的私有符号表,该表用作模块中定义的所有函数的全局符号表。因此,模块的作者可以在模块内使用全局变量,而不必担心与用户的全局变量发生意外冲突。另一方面,如果你知道自己在做什么,则可以用跟访问模块内的函数的同样标记方法,去访问一个模块的全局变量,modname.itemname

模块可以导入其它模块。习惯上但不要求把所有 import 语句放在模块(或脚本)的开头。被导入的模块名存放在调入模块的全局符号表中。

import 语句有一个变体,它可以把名字从一个被调模块内直接导入到现模块的符号表里。例如:

>>>

1
2
3
>>> from fibo import fib, fib2
>>> fib(500)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

这并不会把被调模块名引入到局部变量表里(因此在这个例子里,fibo 是未被定义的)。

还有一个变体甚至可以导入模块内定义的所有名称:

>>>

1
2
3
>>> from fibo import *
>>> fib(500)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

这会调入所有非以下划线(_)开头的名称。 在多数情况下,Python程序员都不会使用这个功能,因为它在解释器中引入了一组未知的名称,而它们很可能会覆盖一些你已经定义过的东西。

注意通常情况下从一个模块或者包内调入 * 的做法是不太被接受的, 因为这通常会导致代码的可读性很差。不过,在交互式编译器中为了节省打字可以这么用。

如果模块名称之后带有 as,则跟在 as 之后的名称将直接绑定到所导入的模块。

>>>

1
2
3
>>> import fibo as fib
>>> fib.fib(500)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

这会和 import fibo 方式一样有效地调入模块, 唯一的区别是它以 fib 的名称存在的。

It can also be used when utilising from with similar effects:

>>>

1
2
3
>>> from fibo import fib as fibonacci
>>> fibonacci(500)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

注解

出于效率的考虑,每个模块在每个解释器会话中只被导入一次。因此,如果你更改了你的模块,则必须重新启动解释器, 或者,如果它只是一个要交互式地测试的模块,请使用 importlib.reload(),例如 importimportlib; importlib.reload(modulename)

6.1.1. 以脚本的方式执行模块

当你用下面方式运行一个Python模块:

1
python fibo.py <arguments>

模块里的代码会被执行,就好像你导入了模块一样,但是 __name__ 被赋值为 "__main__"。 这意味着通过在你的模块末尾添加这些代码:

1
2
3
if __name__ == "__main__":
import sys
fib(int(sys.argv[1]))

你既可以把这个文件当作脚本又可当作一个可调入的模块来使用, 因为那段解析命令行的代码只有在当模块是以“main”文件的方式执行的时候才会运行:

1
2
$ python fibo.py 50
0 1 1 2 3 5 8 13 21 34

如果模块是被导入的,那些代码是不运行的:

>>>

1
2
>>> import fibo
>>>

这经常用于为模块提供一个方便的用户接口,或用于测试(以脚本的方式运行模块从而执行一些测试套件)。

6.1.2. 模块搜索路径

当一个名为 spam 的模块被导入的时候,解释器首先寻找具有该名称的内置模块。如果没有找到,然后解释器从 sys.path 变量给出的目录列表里寻找名为 spam.py 的文件。sys.path 初始有这些目录地址:

  • 包含输入脚本的目录(或者未指定文件时的当前目录)。
  • PYTHONPATH (一个包含目录名称的列表,它和shell变量 PATH 有一样的语法)。
  • 取决于安装的默认设置

注解

在支持符号链接的文件系统上,包含输入脚本的目录是在追加符号链接后才计算出来的。换句话说,包含符号链接的目录并 没有 被添加到模块的搜索路径上。

在初始化后,Python程序可以更改 sys.path。包含正在运行脚本的文件目录被放在搜索路径的开头处, 在标准库路径之前。这意味着将加载此目录里的脚本,而不是标准库中的同名模块。 除非有意更换,否则这是错误。更多信息请参阅 标准模块

6.1.3. “编译过的”Python文件

为了加速模块载入,Python在 __pycache__ 目录里缓存了每个模块的编译后版本,名称为 module.*version*.pyc ,其中名称中的版本字段对编译文件的格式进行编码; 它一般使用Python版本号。例如,在CPython版本3.3中,spam.py的编译版本将被缓存为 __pycache__/spam.cpython-33.pyc。此命名约定允许来自不同发行版和不同版本的Python的已编译模块共存。

Python根据编译版本检查源的修改日期,以查看它是否已过期并需要重新编译。这是一个完全自动化的过程。此外,编译的模块与平台无关,因此可以在具有不同体系结构的系统之间共享相同的库。

Python在两种情况下不会检查缓存。首先,对于从命令行直接载入的模块,它从来都是重新编译并且不存储编译结果;其次,如果没有源模块,它不会检查缓存。为了支持无源文件(仅编译)发行版本, 编译模块必须是在源目录下,并且绝对不能有源模块。

给专业人士的一些小建议:

  • 你可以在Python命令中使用 -O 或者 -OO 开关, 以减小编译后模块的大小。 -O 开关去除断言语句,-OO 开关同时去除断言语句和 doc 字符串。由于有些程序可能依赖于这些,你应当只在清楚自己在做什么时才使用这个选项。“优化过的”模块有一个 opt- 标签并且通常小些。将来的发行版本或许会更改优化的效果。
  • 一个从 .pyc 文件读出的程序并不会比它从 .py 读出时运行的更快,.pyc 文件唯一快的地方在于载入速度。
  • compileall 模块可以为一个目录下的所有模块创建.pyc文件。
  • 关于这个过程,PEP 3147 中有更多细节,包括一个决策流程图。

6.2. 标准模块

Python附带了一个标准模块库,在单独的文档Python库参考(以下称为“库参考”)中进行了描述。一些模块内置于解释器中;它们提供对不属于语言核心但仍然内置的操作的访问,以提高效率或提供对系统调用等操作系统原语的访问。这些模块的集合是一个配置选项,它也取决于底层平台。例如,winreg 模块只在Windows操作系统上提供。一个特别值得注意的模块 sys,它被内嵌到每一个Python解释器中。变量 sys.ps1sys.ps2 定义用作主要和辅助提示的字符串:

>>>

1
2
3
4
5
6
7
8
9
>>> import sys
>>> sys.ps1
'>>> '
>>> sys.ps2
'... '
>>> sys.ps1 = 'C> '
C> print('Yuck!')
Yuck!
C>

这两个变量只有在编译器是交互模式下才被定义。

sys.path 变量是一个字符串列表,用于确定解释器的模块搜索路径。该变量被初始化为从环境变量 PYTHONPATH 获取的默认路径,或者如果 PYTHONPATH 未设置,则从内置默认路径初始化。你可以使用标准列表操作对其进行修改:

>>>

1
2
>>> import sys
>>> sys.path.append('/ufs/guido/lib/python')

6.3. dir() 函数

内置函数 dir() 用于查找模块定义的名称。 它返回一个排序过的字符串列表:

>>>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
>>> import fibo, sys
>>> dir(fibo)
['__name__', 'fib', 'fib2']
>>> dir(sys)
['__displayhook__', '__doc__', '__excepthook__', '__loader__', '__name__',
'__package__', '__stderr__', '__stdin__', '__stdout__',
'_clear_type_cache', '_current_frames', '_debugmallocstats', '_getframe',
'_home', '_mercurial', '_xoptions', 'abiflags', 'api_version', 'argv',
'base_exec_prefix', 'base_prefix', 'builtin_module_names', 'byteorder',
'call_tracing', 'callstats', 'copyright', 'displayhook',
'dont_write_bytecode', 'exc_info', 'excepthook', 'exec_prefix',
'executable', 'exit', 'flags', 'float_info', 'float_repr_style',
'getcheckinterval', 'getdefaultencoding', 'getdlopenflags',
'getfilesystemencoding', 'getobjects', 'getprofile', 'getrecursionlimit',
'getrefcount', 'getsizeof', 'getswitchinterval', 'gettotalrefcount',
'gettrace', 'hash_info', 'hexversion', 'implementation', 'int_info',
'intern', 'maxsize', 'maxunicode', 'meta_path', 'modules', 'path',
'path_hooks', 'path_importer_cache', 'platform', 'prefix', 'ps1',
'setcheckinterval', 'setdlopenflags', 'setprofile', 'setrecursionlimit',
'setswitchinterval', 'settrace', 'stderr', 'stdin', 'stdout',
'thread_info', 'version', 'version_info', 'warnoptions']

如果没有参数,dir() 会列出你当前定义的名称:

>>>

1
2
3
4
5
>>> a = [1, 2, 3, 4, 5]
>>> import fibo
>>> fib = fibo.fib
>>> dir()
['__builtins__', '__name__', 'a', 'fib', 'fibo', 'sys']

注意:它列出所有类型的名称:变量,模块,函数,等等。

dir() 不会列出内置函数和变量的名称。如果你想要这些,它们的定义是在标准模块 builtins 中:

>>>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
>>> import builtins
>>> dir(builtins)
['ArithmeticError', 'AssertionError', 'AttributeError', 'BaseException',
'BlockingIOError', 'BrokenPipeError', 'BufferError', 'BytesWarning',
'ChildProcessError', 'ConnectionAbortedError', 'ConnectionError',
'ConnectionRefusedError', 'ConnectionResetError', 'DeprecationWarning',
'EOFError', 'Ellipsis', 'EnvironmentError', 'Exception', 'False',
'FileExistsError', 'FileNotFoundError', 'FloatingPointError',
'FutureWarning', 'GeneratorExit', 'IOError', 'ImportError',
'ImportWarning', 'IndentationError', 'IndexError', 'InterruptedError',
'IsADirectoryError', 'KeyError', 'KeyboardInterrupt', 'LookupError',
'MemoryError', 'NameError', 'None', 'NotADirectoryError', 'NotImplemented',
'NotImplementedError', 'OSError', 'OverflowError',
'PendingDeprecationWarning', 'PermissionError', 'ProcessLookupError',
'ReferenceError', 'ResourceWarning', 'RuntimeError', 'RuntimeWarning',
'StopIteration', 'SyntaxError', 'SyntaxWarning', 'SystemError',
'SystemExit', 'TabError', 'TimeoutError', 'True', 'TypeError',
'UnboundLocalError', 'UnicodeDecodeError', 'UnicodeEncodeError',
'UnicodeError', 'UnicodeTranslateError', 'UnicodeWarning', 'UserWarning',
'ValueError', 'Warning', 'ZeroDivisionError', '_', '__build_class__',
'__debug__', '__doc__', '__import__', '__name__', '__package__', 'abs',
'all', 'any', 'ascii', 'bin', 'bool', 'bytearray', 'bytes', 'callable',
'chr', 'classmethod', 'compile', 'complex', 'copyright', 'credits',
'delattr', 'dict', 'dir', 'divmod', 'enumerate', 'eval', 'exec', 'exit',
'filter', 'float', 'format', 'frozenset', 'getattr', 'globals', 'hasattr',
'hash', 'help', 'hex', 'id', 'input', 'int', 'isinstance', 'issubclass',
'iter', 'len', 'license', 'list', 'locals', 'map', 'max', 'memoryview',
'min', 'next', 'object', 'oct', 'open', 'ord', 'pow', 'print', 'property',
'quit', 'range', 'repr', 'reversed', 'round', 'set', 'setattr', 'slice',
'sorted', 'staticmethod', 'str', 'sum', 'super', 'tuple', 'type', 'vars',
'zip']

9. 类

类提供了一种组合数据和功能的方法。创建一个新类意味着创建一个新 类型 的对象,从而允许创建一个该类型的新 实例 。每个类的实例可以拥有保存自己状态的属性。一个类的实例也可以有改变自己状态的(定义在类中的)方法。

和其他编程语言相比,Python 用非常少的新语法和语义将类加入到语言中。它是 C++ 和 Modula-3 中类机制的结合。Python 的类提供了面向对象编程的所有标准特性:类继承机制允许多个基类,派生类可以覆盖它基类的任何方法,一个方法可以调用基类中相同名称的的方法。对象可以包含任意数量和类型的数据。和模块一样,类也拥有 Python 天然的动态特性:它们在运行时创建,可以在创建后修改。

在C++术语中,通常类成员(包括数据成员)是 public (除了见下文 私有变量 ),所有成员函数都是 virtual 。与在Modula-3中一样,没有用于从其方法引用对象成员的简写:方法函数使用表示对象的显式第一个参数声明,该参数由调用隐式提供。与Smalltalk一样,类本身也是对象。这为导入和重命名提供了语义。与C++和Modula-3不同,内置类型可以用作用户扩展的基类。此外,与C++一样,大多数具有特殊语法(算术运算符,下标等)的内置运算符都可以重新定义为类实例。

(Lacking universally accepted terminology to talk about classes, I will make occasional use of Smalltalk and C++ terms. I would use Modula-3 terms, since its object-oriented semantics are closer to those of Python than C++, but I expect that few readers have heard of it.)

9.1. 名称和对象

对象具有个性,多个名称(在多个作用域内)可以绑定到同一个对象。这在其他语言中称为别名。乍一看Python时通常不会理解这一点,在处理不可变的基本类型(数字,字符串,元组)时可以安全地忽略它。但是,别名对涉及可变对象,如列表,字典和大多数其他类型,的Python代码的语义可能会产生惊人的影响。这通常用于程序的好处,因为别名在某些方面表现得像指针。例如,传递一个对象很便宜,因为实现只传递一个指针;如果函数修改了作为参数传递的对象,调用者将看到更改 —- 这就不需要像 Pascal 中那样使用两个不同的参数传递机制。

9.2. Python 作用域和命名空间

在介绍类之前,我首先要告诉你一些Python的作用域规则。类定义对命名空间有一些巧妙的技巧,你需要知道作用域和命名空间如何工作才能完全理解正在发生的事情。顺便说一下,关于这个主题的知识对任何高级Python程序员都很有用。

让我们从一些定义开始。

namespace 是一个从名字到对象的映射。 大部分命名空间当前都由 Python 字典实现,但一般情况下基本不会去关注它们(除了要面对性能问题时),而且也有可能在将来更改。 下面是几个命名空间的例子:存放内置函数的集合(包含 abs() 这样的函数,和内建的异常等);模块中的全局名称;函数调用中的本地名称。 从某种意义上说,对象的属性集合也是一种命名空间的形式。 关于命名空间的重要一点是,不同命名空间中的名称之间绝对没有关系;例如,两个不同的模块都可以定义一个 maximize 函数而不会产生混淆 —- 模块的用户必须在其前面加上模块名称。

顺便说明一下,我把任何跟在一个点号之后的名称都称为 属性 —- 例如,在表达式 z.real 中,real 是对象 z 的一个属性。按严格的说法,对模块中名称的引用属于属性引用:在表达式 modname.funcname 中,modname 是一个模块对象而 funcname 是它的一个属性。在此情况下在模块的属性和模块中定义的全局名称之间正好存在一个直观的映射:它们共享相同的命名空间! [1]

属性可以是只读或者可写的。如果为后者,那么对属性的赋值是可行的。模块属性是可以写,你可以写出 modname.the_answer = 42 。可写的属性同样可以用 del 语句删除。例如, del modname.the_answer 将会从名为 modname 的对象中移除 the_answer 属性。

在不同时刻创建的命名空间拥有不同的生存期。包含内置名称的命名空间是在 Python 解释器启动时创建的,永远不会被删除。模块的全局命名空间在模块定义被读入时创建;通常,模块命名空间也会持续到解释器退出。被解释器的顶层调用执行的语句,从一个脚本文件读取或交互式地读取,被认为是 __main__ 模块调用的一部分,因此它们拥有自己的全局命名空间。(内置名称实际上也存在于一个模块中;这个模块称作 builtins 。)

一个函数的本地命名空间在这个函数被调用时创建,并在函数返回或抛出一个不在函数内部处理的错误时被删除。(事实上,比起描述到底发生了什么,忘掉它更好。)当然,每次递归调用都会有它自己的本地命名空间。

一个 作用域 是一个命名空间可直接访问的 Python 程序的文本区域。 这里的 “可直接访问” 意味着对名称的非限定引用会尝试在命名空间中查找名称。

Although scopes are determined statically, they are used dynamically. At any time during execution, there are at least three nested scopes whose namespaces are directly accessible:

  • 最先搜索的最内部作用域包含局部名称
  • 从最近的封闭作用域开始搜索的任何封闭函数的范围包含非局部名称,也包括非全局名称
  • 倒数第二个作用域包含当前模块的全局名称
  • 最外面的范围(最后搜索)是包含内置名称的命名空间

如果一个名称被声明为全局变量,则所有引用和赋值将直接指向包含该模块的全局名称的中间作用域。 要重新绑定在最内层作用域以外找到的变量,可以使用 nonlocal 语句声明为非本地变量。 如果没有被声明为非本地变量,这些变量将是只读的(尝试写入这样的变量只会在最内层作用域中创建一个 新的 局部变量,而同名的外部变量保持不变)。

通常,当前局部作为域将(按字面文本)引用当前函数的局部名称。 在函数以外,局部作用域将引用与全局作用域相一致的命名空间:模块的命名空间。 类定义将在局部命名空间内再放置另一个命名空间。

重要的是应该意识到作用域是按字面文本来确定的:在一个模块内定义的函数的全局作用域就是该模块的命名空间,无论该函数从什么地方或以什么别名被调用。 另一方面,实际的名称搜索是在运行时动态完成的 —- 但是,语言定义在 编译时 是朝着静态名称解析的方向演化的,因此不要过于依赖动态名称解析! (事实上,局部变量已经是被静态确定了。)

Python 的一个特殊之处在于 — 如果不存在生效的 global 语句 — 对名称的赋值总是进入最内层作用域。 赋值不会复制数据 —- 它们只是将名称绑定到对象。 删除也是如此:语句 del x 会从局部命名空间的引用中移除对 x 的绑定。 事实上,所有引入新名称的操作都使用局部作用域:特别地,import 语句和函数定义会在局部作用域中绑定模块或函数名称。

global 语句可被用来表明特定变量生存于全局作用域并且应当在其中被重新绑定;nonlocal 语句表明特定变量生存于外层作用域中并且应当在其中被重新绑定。

差不多行了

9.3. 初探类

类引入了一些新语法,三种新对象类型和一些新语义。

9.3.1. 类定义语法

最简单的类定义看起来像这样:

1
2
3
4
5
6
class ClassName:
<statement-1>
.
.
.
<statement-N>

类定义与函数定义 (def 语句) 一样必须被执行才会起作用。 (你可以尝试将类定义放在 if 语句的一个分支或是函数的内部。)

在实践中,类定义内的语句通常都是函数定义,但也允许有其他语句,有时还很有用 —- 我们会稍后再回来说明这个问题。 在类内部的函数定义通常具有一种特别形式的参数列表,这是方法调用的约定规范所指明的 —- 这个问题也将在稍后再说明。

当进入类定义时,将创建一个新的命名空间,并将其用作局部作用域 —- 因此,所有对局部变量的赋值都是在这个新命名空间之内。 特别的,函数定义会绑定到这里的新函数名称。

当(从结尾处)正常离开类定义时,将创建一个 类对象。 这基本上是一个包围在类定义所创建命名空间内容周围的包装器;我们将在下一节了解有关类对象的更多信息。 原始的(在进入类定义之前起作用的)局部作用域将重新生效,类对象将在这里被绑定到类定义头所给出的类名称 (在这个示例中为 ClassName)。

9.3.2. 类对象

类对象支持两种操作:属性引用和实例化。

属性引用 使用 Python 中所有属性引用所使用的标准语法: obj.name。 有效的属性名称是类对象被创建时存在于类命名空间中的所有名称。 因此,如果类定义是这样的:

1
2
3
4
5
6
class MyClass:
"""A simple example class"""
i = 12345

def f(self):
return 'hello world'

那么 MyClass.iMyClass.f 就是有效的属性引用,将分别返回一个整数和一个函数对象。 类属性也可以被赋值,因此可以通过赋值来更改 MyClass.i 的值。 __doc__ 也是一个有效的属性,将返回所属类的文档字符串: "Asimple example class"

类的 实例化 是使用函数表示法。 可以相像类对象就是会返回一个新的类实例的不带参数的函数。 举例来说(假设使用上述的类):

1
x = MyClass()

创建类的新 实例 并将此对象分配给局部变量 x

实例化操作(“调用”类对象)会创建一个空对象。 许多类喜欢创建带有特定初始状态的自定义实例。 为此类定义可能包含一个名为 __init__() 的特殊方法,就像这样:

1
2
def __init__(self):
self.data = []

当一个类定义了 __init__() 方法时,类的实例化操作会自动为新创建的类实例发起调用 __init__()。 因此在这个示例中,可以通过以下语句获得一个经初始化的新实例:

1
x = MyClass()

当然,__init__() 方法还可以有额外参数以实现更高灵活性。 在这种情况下,提供给类实例化运算符的参数将被传递给 __init__()。 例如,:

>>>

1
2
3
4
5
6
7
8
>>> class Complex:
... def __init__(self, realpart, imagpart):
... self.r = realpart
... self.i = imagpart
...
>>> x = Complex(3.0, -4.5)
>>> x.r, x.i
(3.0, -4.5)

类名后面跟一个(object)表示的应该是继承。

9.3.3. 实例对象

现在我们可以用实例对象做什么?实例对象理解的唯一操作是属性引用。有两种有效的属性名称,数据属性和方法。

数据属性 对应于 Smalltalk 中的“实例变量”,以及 C++ 中的“数据成员”。 数据属性不需要声明;像局部变量一样,它们将在第一次被赋值时产生。 例如,如果 x 是上面创建的 MyClass 的实例,则以下代码段将打印数值 16,且不保留任何追踪信息:

1
2
3
4
5
x.counter = 1
while x.counter < 10:
x.counter = x.counter * 2
print(x.counter)
del x.counter

另一类实例属性引用称为 方法。 方法是“从属于”对象的函数。 (在 Python 中,方法这个术语并不是类实例所特有的:其他对方也可以有方法。 例如,列表对象具有 append, insert, remove, sort 等方法。 然而,在以下讨论中,我们使用方法一词将专指类实例对象的方法,除非另外显式地说明。)

实例对象的有效方法名称依赖于其所属的类。 根据定义,一个类中所有是函数对象的属性都是定义了其实例的相应方法。 因此在我们的示例中,x.f 是有效的方法引用,因为 MyClass.f 是一个函数,而 x.i 不是方法,因为 MyClass.i 不是一个函数。 但是 x.fMyClass.f 并不是一回事 —- 它是一个 方法对象,不是函数对象。

9.3.4. 方法对象

通常,方法在绑定后立即被调用:

1
x.f()

MyClass 示例中,这将返回字符串 'hello world'。 但是,立即调用一个方法并不是必须的: x.f 是一个方法对象,它可以被保存起来以后再调用。 例如:

1
2
3
xf = x.f
while True:
print(xf())

将继续打印 hello world,直到结束。

当一个方法被调用时到底发生了什么? 你可能已经注意到上面调用 x.f() 时并没有带参数,虽然 f() 的函数定义指定了一个参数。 这个参数发生了什么事? 当不带参数地调用一个需要参数的函数时 Python 肯定会引发异常 —- 即使参数实际未被使用…

实际上,你可能已经猜到了答案:方法的特殊之处就在于实例对象会作为函数的第一个参数被传入。 在我们的示例中,调用 x.f() 其实就相当于 MyClass.f(x)。 总之,调用一个具有 n 个参数的方法就相当于调用再多一个参数的对应函数,这个参数值为方法所属实例对象,位置在其他参数之前。

如果你仍然无法理解方法的运作原理,那么查看实现细节可能会澄清问题。 当一个实例的非数据属性被引用时,将搜索实例所属的类。 如果名称表示一个属于函数对象的有效类属性,会通过合并打包(指向)实例对象和函数对象到一个抽象对象中的方式来创建一个方法对象:这个抽象对象就是方法对象。 当附带参数列表调用方法对象时,将基于实例对象和参数列表构建一个新的参数列表,并使用这个新参数列表调用相应的函数对象。

9.3.5. 类和实例变量

一般来说,实例变量用于每个实例的唯一数据,而类变量用于类的所有实例共享的属性和方法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
class Dog:

kind = 'canine' # class variable shared by all instances

def __init__(self, name):
self.name = name # instance variable unique to each instance

>>> d = Dog('Fido')
>>> e = Dog('Buddy')
>>> d.kind # shared by all dogs
'canine'
>>> e.kind # shared by all dogs
'canine'
>>> d.name # unique to d
'Fido'
>>> e.name # unique to e
'Buddy'

正如 名称和对象 中已讨论过的,共享数据可能在涉及 mutable 对象例如列表和字典的时候导致令人惊讶的结果。 例如以下代码中的 tricks 列表不应该被用作类变量,因为所有的 Dog 实例将只共享一个单独的列表:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
class Dog:

tricks = [] # mistaken use of a class variable

def __init__(self, name):
self.name = name

def add_trick(self, trick):
self.tricks.append(trick)

>>> d = Dog('Fido')
>>> e = Dog('Buddy')
>>> d.add_trick('roll over')
>>> e.add_trick('play dead')
>>> d.tricks # unexpectedly shared by all dogs
['roll over', 'play dead']

正确的类设计应该使用实例变量:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
class Dog:

def __init__(self, name):
self.name = name
self.tricks = [] # creates a new empty list for each dog

def add_trick(self, trick):
self.tricks.append(trick)

>>> d = Dog('Fido')
>>> e = Dog('Buddy')
>>> d.add_trick('roll over')
>>> e.add_trick('play dead')
>>> d.tricks
['roll over']
>>> e.tricks
['play dead']

typora有新主题了!

都下载了一个遍,最后还是选了solarized,不过vue似乎也挺漂亮。

似乎typora支持自己写一个css修改背景色,准备改淡绿色。

不过好像css都非常复杂,所以写markdown还是用现成的solarized吧。Vim改成了淡绿色背景。

self关键字用来代指它自己,和c++一样。

9.4. 补充说明

数据属性会覆盖掉具有相同名称的方法属性;为了避免会在大型程序中导致难以发现的错误的意外名称冲突,明智的做法是使用某种约定来最小化冲突的发生几率。 可能的约定包括方法名称使用大写字母,属性名称加上独特的短字符串前缀(或许只加一个下划线),或者是用动词来命名方法,而用名词来命名数据属性。

数据属性可以被方法以及一个对象的普通用户(“客户端”)所引用。 换句话说,类不能用于实现纯抽象数据类型。 实际上,在 Python 中没有任何东西能强制隐藏数据 —- 它是完全基于约定的。 (而在另一方面,用 C 语言编写的 Python 实现则可以完全隐藏实现细节,并在必要时控制对象的访问;此特性可以通过用 C 编写 Python 扩展来使用。)

客户端应当谨慎地使用数据属性 —- 客户端可能通过直接操作数据属性的方式破坏由方法所维护的固定变量。 请注意客户端可以向一个实例对象添加他们自己的数据属性而不会影响方法的可用性,只要保证避免名称冲突 —- 再次提醒,在此使用命名约定可以省去许多令人头痛的麻烦。

在方法内部引用数据属性(或其他方法!)并没有简便方式。 我发现这实际上提升了方法的可读性:当浏览一个方法代码时,不会存在混淆局部变量和实例变量的机会。

方法的第一个参数常常被命名为 self。 这也不过就是一个约定: self 这一名称在 Python 中绝对没有特殊含义。 但是要注意,不遵循此约定会使得你的代码对其他 Python 程序员来说缺乏可读性,而且也可以想像一个 类浏览器程序的编写可能会依赖于这样的约定。

任何一个作为类属性的函数都为该类的实例定义了一个相应方法。 函数定义的文本并非必须包含于类定义之内:将一个函数对象赋值给一个局部变量也是可以的。 例如:

1
2
3
4
5
6
7
8
9
10
11
# Function defined outside the class
def f1(self, x, y):
return min(x, x+y)

class C:
f = f1

def g(self):
return 'hello world'

h = g

现在 f, gh 都是 C 类的引用函数对象的属性,因而它们就都是 C 的实例的方法 —- 其中 h 完全等同于 g。 但请注意,本示例的做法通常只会令程序的阅读者感到迷惑。

方法可以通过使用 self 参数的方法属性调用其他方法:

1
2
3
4
5
6
7
8
9
10
class Bag:
def __init__(self):
self.data = []

def add(self, x):
self.data.append(x)

def addtwice(self, x):
self.add(x)
self.add(x)

方法可以通过与普通函数相同的方式引用全局名称。 与方法相关联的全局作用域就是包含其定义的模块。 (类永远不会被作为全局作用域。) 虽然我们很少会有充分的理由在方法中使用全局作用域,但全局作用域存在许多合法的使用场景:举个例子,导入到全局作用域的函数和模块可以被方法所使用,在其中定义的函数和类也一样。 通常,包含该方法的类本身是在全局作用域中定义的,而在下一节中我们将会发现为何方法需要引用其所属类的很好的理由。

每个值都是一个对象,因此具有 (也称为 类型),并存储为 object.__class__

9.5. 继承

当然,如果不支持继承,语言特性就不值得称为“类”。派生类定义的语法如下所示:

1
2
3
4
5
6
class DerivedClassName(BaseClassName):
<statement-1>
.
.
.
<statement-N>

名称 BaseClassName 必须定义于包含派生类定义的作用域中。 也允许用其他任意表达式代替基类名称所在的位置。 这有时也可能会用得上,例如,当基类定义在另一个模块中的时候:

1
class DerivedClassName(modname.BaseClassName):

派生类定义的执行过程与基类相同。 当构造类对象时,基类会被记住。 此信息将被用来解析属性引用:如果请求的属性在类中找不到,搜索将转往基类中进行查找。 如果基类本身也派生自其他某个类,则此规则将被递归地应用。

派生类的实例化没有任何特殊之处: DerivedClassName() 会创建该类的一个新实例。 方法引用将按以下方式解析:搜索相应的类属性,如有必要将按基类继承链逐步向下查找,如果产生了一个函数对象则方法引用就生效。

派生类可能会重载其基类的方法。 因为方法在调用同一对象的其他方法时没有特殊权限,调用同一基类中定义的另一方法的基类方法最终可能会调用覆盖它的派生类的方法。 (对 C++ 程序员的提示:Python 中所有的方法实际上都是 virtual 方法。)

在派生类中的重载方法实际上可能想要扩展而非简单地替换同名的基类方法。 有一种方式可以简单地直接调用基类方法:即调用 BaseClassName.methodname(self, arguments)。 有时这对客户端来说也是有用的。 (请注意仅当此基类可在全局作用域中以 BaseClassName 的名称被访问时方可使用此方式。)

Python有两个内置函数可被用于继承机制:

  • 使用 isinstance() 来检查一个实例的类型: isinstance(obj, int) 仅会在 obj.__class__int 或某个派生自 int 的类时为 True
  • 使用 issubclass() 来检查类的继承关系: issubclass(bool, int)True,因为 boolint 的子类。 但是,issubclass(float, int)False,因为 float 不是 int 的子类。

9.5.1. 多重继承

Python supports a form of multiple inheritance as well. A class definition with multiple base classes looks like this:

1
2
3
4
5
6
class DerivedClassName(Base1, Base2, Base3):
<statement-1>
.
.
.
<statement-N>

对于多数应用来说,在最简单的情况下,你可以认为搜索从父类所继承属性的操作是深度优先、从左至右的,当层次结构中存在重叠时不会在同一个类中搜索两次。 因此,如果某一属性在 DerivedClassName 中未找到,则会到 Base1 中搜索它,然后(递归地)到 Base1 的基类中搜索,如果在那里未找到,再到 Base2 中搜索,依此类推。

真实情况比这个更复杂一些;方法解析顺序会动态改变以支持对 super() 的协同调用。 这种方式在某些其他多重继承型语言中被称为后续方法调用,它比单继承型语言中的 super 调用更强大。

动态改变顺序是有必要的,因为所有多重继承的情况都会显示出一个或更多的菱形关联(即至少有一个父类可通过多条路径被最底层类所访问)。 例如,所有类都是继承自 object,因此任何多重继承的情况都提供了一条以上的路径可以通向 object。 为了确保基类不会被访问一次以上,动态算法会用一种特殊方式将搜索顺序线性化, 保留每个类所指定的从左至右的顺序,只调用每个父类一次,并且保持单调(即一个类可以被子类化而不影响其父类的优先顺序)。 总而言之,这些特性使得设计具有多重继承的可靠且可扩展的类成为可能。 要了解更多细节,请参阅 https://www.python.org/download/releases/2.3/mro/

9.6. 私有变量

那种仅限从一个对象内部访问的“私有”实例变量在 Python 中并不存在。 但是,大多数 Python 代码都遵循这样一个约定:带有一个下划线的名称 (例如 _spam) 应该被当作是 API 的非仅供部分 (无论它是函数、方法或是数据成员)。 这应当被视为一个实现细节,可能不经通知即加以改变。

由于存在对于类私有成员的有效使用场景(例如避免名称与子类所定义的名称相冲突),因此存在对此种机制的有限支持,称为 名称改写。 任何形式为 __spam 的标识符(至少带有两个前缀下划线,至多一个后缀下划线)的文本将被替换为 _classname__spam,其中 classname 为去除了前缀下划线的当前类名称。 这种改写不考虑标识符的句法位置,只要它出现在类定义内部就会进行。

名称改写有助于让子类重载方法而不破坏类内方法调用。例如:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Mapping:
def __init__(self, iterable):
self.items_list = []
self.__update(iterable)

def update(self, iterable):
for item in iterable:
self.items_list.append(item)

__update = update # private copy of original update() method

class MappingSubclass(Mapping):

def update(self, keys, values):
# provides new signature for update()
# but does not break __init__()
for item in zip(keys, values):
self.items_list.append(item)

上面的示例即使在 MappingSubclass 引入了一个 __update 标识符的情况下也不会出错,因为它会在 Mapping 类中被替换为 _Mapping__update 而在 MappingSubclass 类中被替换为 _MappingSubclass__update

请注意,改写规则的设计主要是为了避免意外冲突;访问或修改被视为私有的变量仍然是可能的。这在特殊情况下甚至会很有用,例如在调试器中。

请注意传递给 exec()eval() 的代码不会将发起调用类的类名视作当前类;这类似于 global 语句的效果,因此这种效果仅限于同时经过字节码编译的代码。 同样的限制也适用于 getattr(), setattr()delattr(),以及对于 __dict__ 的直接引用。

9.7. 杂项说明

有时会需要使用类似于 Pascal 的“record”或 C 的“struct”这样的数据类型,将一些命名数据项捆绑在一起。 这种情况适合定义一个空类:

1
2
3
4
5
6
7
8
9
class Employee:
pass

john = Employee() # Create an empty employee record

# Fill the fields of the record
john.name = 'John Doe'
john.dept = 'computer lab'
john.salary = 1000

一段需要特定抽象数据类型的 Python 代码往往可以被传入一个模拟了该数据类型的方法的类作为替代。 例如,如果你有一个基于文件对象来格式化某些数据的函数,你可以定义一个带有 read()readline() 方法从字符串缓存获取数据的类,并将其作为参数传入。

实例方法对象也具有属性: m.__self__ 就是带有 m() 方法的实例对象,而 m.__func__ 则是该方法所对应的函数对象。

9.8. 迭代器

到目前为止,您可能已经注意到大多数容器对象都可以使用 for 语句:

1
2
3
4
5
6
7
8
9
10
for element in [1, 2, 3]:
print(element)
for element in (1, 2, 3):
print(element)
for key in {'one':1, 'two':2}:
print(key)
for char in "123":
print(char)
for line in open("myfile.txt"):
print(line, end='')

这种访问风格清晰、简洁又方便。 迭代器的使用非常普遍并使得 Python 成为一个统一的整体。 在幕后,for 语句会调用容器对象中的 iter()。 该函数返回一个定义了 __next__() 方法的迭代器对象,该方法将逐一访问容器中的元素。 当元素用尽时,__next__() 将引发 StopIteration 异常来通知终止 for 循环。 你可以使用 next() 内置函数来调用 __next__() 方法;这个例子显示了它的运作方式:

>>>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
>>> s = 'abc'
>>> it = iter(s)
>>> it
<iterator object at 0x00A1DB50>
>>> next(it)
'a'
>>> next(it)
'b'
>>> next(it)
'c'
>>> next(it)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
next(it)
StopIteration

看过迭代器协议的幕后机制,给你的类添加迭代器行为就很容易了。 定义一个 __iter__() 方法来返回一个带有 __next__() 方法的对象。 如果类已定义了 __next__(),则 __iter__() 可以简单地返回 self:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
class Reverse:
"""Iterator for looping over a sequence backwards."""
def __init__(self, data):
self.data = data
self.index = len(data)

def __iter__(self):
return self

def __next__(self):
if self.index == 0:
raise StopIteration
self.index = self.index - 1
return self.data[self.index]

>>>

1
2
3
4
5
6
7
8
9
10
>>> rev = Reverse('spam')
>>> iter(rev)
<__main__.Reverse object at 0x00A1DB50>
>>> for char in rev:
... print(char)
...
m
a
p
s

9.9. 生成器

Generator 是一个用于创建迭代器的简单而强大的工具。 它们的写法类似标准的函数,但当它们要返回数据时会使用 yield 语句。 每次对生成器调用 next() 时,它会从上次离开位置恢复执行(它会记住上次执行语句时的所有数据值)。 显示如何非常容易地创建生成器的示例如下:

1
2
3
def reverse(data):
for index in range(len(data)-1, -1, -1):
yield data[index]

>>>

1
2
3
4
5
6
7
>>> for char in reverse('golf'):
... print(char)
...
f
l
o
g

可以用生成器来完成的操作同样可以用前一节所描述的基于类的迭代器来完成。 但生成器的写法更为紧凑,因为它会自动创建 __iter__()__next__() 方法。

另一个关键特性在于局部变量和执行状态会在每次调用之间自动保存。 这使得该函数相比使用 self.indexself.data 这种实例变量的方式更易编写且更为清晰。

除了会自动创建方法和保存程序状态,当生成器终结时,它们还会自动引发 StopIteration。 这些特性结合在一起,使得创建迭代器能与编写常规函数一样容易。

9.10. 生成器表达式

某些简单的生成器可以写成简洁的表达式代码,所用语法类似列表推导式,将外层为圆括号而非方括号。 这种表达式被设计用于生成器将立即被外层函数所使用的情况。 生成器表达式相比完整的生成器更紧凑但较不灵活,相比等效的列表推导式则更为节省内存。

例如:

>>>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
>>> sum(i*i for i in range(10))                 # sum of squares
285

>>> xvec = [10, 20, 30]
>>> yvec = [7, 5, 3]
>>> sum(x*y for x,y in zip(xvec, yvec)) # dot product
260

>>> from math import pi, sin
>>> sine_table = {x: sin(x*pi/180) for x in range(0, 91)}

>>> unique_words = set(word for line in page for word in line.split())

>>> valedictorian = max((student.gpa, student.name) for student in graduates)

>>> data = 'golf'
>>> list(data[i] for i in range(len(data)-1, -1, -1))
['f', 'l', 'o', 'g']

到此为止