Post 67

还是决定报名一下APIO,毕竟不想留下遗憾。没报CTS。

刷水题.jpg

题意描述

f(n)的定义为:f(n)=1^3+2^3+3^3+…+n^3,所以它是所有自然数到n的立方的和。

在这个问题中,你要计算,f(1) + f(2) + f(3) +…+ f (n)

输入输出格式

输入格式

第一行是一个整数T(1≤T≤100000),表示测试用例的数量。接下来是T个测试用例。对于每个测试用例,都有一个整数n (1≤n≤1000000),写在一行。

输出格式

对于每个测试用例,输出上述算式的结果。

由于这个数字可能非常大,因此输出答案模1 000,000,003。

输入输出样例

输入样例#1:

1
2
3
4
3
2
10
3

输出样例#1:

1
2
3
10
7942
46

题目背景

题意翻译:

定义f(n)=\sum\limits{i=1}^ni^3f(n)=i=1∑n**i3
你需要求出\sum\limits
{i=1}^nf(i)i=1∑n**f(i)
将答案对10000000031000000003取模。

输入格式:

一行一个正整数TT,接下来TT行,每行一个正整数nn

输出格式:

TT行,每行一个正整数表示答案

题目描述

f(n) is defined as: $f(n) = 1 ^{3} +2 ^{3} +3 ^{3} +…+n ^{3}$ , so it is the sum of the cubes of all natural numbers up to n.

In this problem you are about to compute,

$f(1) + f(2) + f(3) + … + f(n)$

输入输出格式

输入格式:

The first line is an integer T(1 T T test cases follow.

For each test case, there is an integer n(1 n

输出格式:

For each test case output the result of the summatory function described above.

Since this number could be very large, output the answer modulo 1,000,000,003.

输入输出样例

输入样例#1:

1
\n3\n2\n10\n3\n\n

输出样例#1:

1
\n10\n7942\n46

Solution

A introduction of Equal power summation

Well , this problem is very easy if you use linear recurrence.
First we need to learn how to calculate the sum of pow !
Let’s start !

first we calculate

$\sum_{i=1}^{n}i^2$

Lemma :
$(i+1)^3-i^3$
$=3i^2+3i+1$

$i^2 = \frac{(i+1)^3-i^3-3i-1}{3}$


$\sum{i=1}^{n}i^2$
$ = \sum
{i=1}^{n}(i+1)^3-i^3-3i-1$
$=\frac{(n+1)^3-1-3\sum_{i=1}^{n}-n}{3}$
$=\frac{n(n+1)(2n+1)}{6}$

$\sum\limits_{i=1}^{n}i^3$

$=\frac{(n+1)^4-1-6\sum\limits{i=1}^{n}i^2-4\sum\limits{i=1}^{n}i-\sum\limits_{i=1}^{n}1}{4}$
$=\frac{(n+1)^4-1-n(n+1)(2n+1)-2n(n+1)-n}{4}$
$=\frac{(n+1)[(n+1)^3-1-n(2n+1)-2n]}{4}$
$=\frac{n^2(n+1)^2}{4}$

Cubic sum finished , but haven’t done yet.

Like above , $\sum\limits_{i=1}^{n}i^4 = 1/5n^5+1/2n^4+1/3n^3-1/30n$

Actually , we could easily extended to $k$ power sum based on Binomial theorem.

And we could use recurrence or explicit expression to write the formula.

explicit expresssion:

$Sm(n) = \frac{1}{m+1}\sum{k=0}^{m}\binom{m+1}{k}B_kn^{m+1-k}$

$B_i$ means Bernulli numbers , which could be calculated by recurrence.

$\sum{i=0}^{m}\binom{m+1}{i}B{i}=0$

$B_0 = 1$

In the concrete calculation before , we found the new sum $Sk(n)$ is relevant to the $S{k-1}(n)$

by calculating , we found:

$Sk(x) = \frac{1}{k+1}\{(x+1)^{n+1}-\sum\limits{i=2}^{k}\binom{k+1}{i}S_{k+1-i}(n)-x-1\}$

(actually it is also could be found by your eyes)

Well , this problem answer is :

$\sum_{i=1}^{n}\frac{n^2(n+1)^2}{4}$
$=O(n^4)$
As we know before , the answer formula is composed by the formula above . could be solve $O(1)$.

QWQ..